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A SURVEY ON SOME OLD AND NEW
IDENTITIES ASSOCIATED WITH LAPLACE

DISTRIBUTION AND BERNOULLI NUMBERS

ZEHRA SELIN ASKAN, IREM KUCUKOGLU, AND YILMAZ SIMSEK

Abstract. The purpose of this paper is to give some survey on old and
new identities related to the characteristic function, the Laplace distri-
bution and special numbers and polynomials with comparative results
and observations. Additionally, we give some computation formulas for
the higher-order moments of some kinds of random variables with the
Laplace distribution in terms of the Bernoulli numbers of the first kind,
the Euler numbers of the second kind and Riemann zeta function by
using the techniques of generating functions and characteristic func-
tion of the aforementioned random variables. Finally, with the aid of
the Hankel determinants formed by the moments corresponding to the
weight function that reveals the orthogonality feature of the orthogo-
nal polynomials, we give futher remarks and observations on not only
orthogonality properties of some orthogonal polynomials such as the
Hermite polynomials, but also construction methods of the three-term
recurrence relations for the orthogonal polynomials.
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1. Introduction

In recent years, many studies have been conducted by researchers about
the relations of some special numbers and polynomials with probability the-
ory and their applications (see [6, 9, 11, 13, 14, 16, 23, 27]). Among these
studies, the papers [6, 9, 11, 16, 27] focused on the moments of random vari-
ables arising from Laplace distribution. In addition, Simsek and Simsek [23]
gave a computation of expected values and moments of special polynomials
via characteristic and generating functions. Furthermore, Kucukoglu et al.
[13] presented an approach to negative hypergeometric distribution by gen-
erating function for special numbers and polynomials. Over and above, by
generating functions for families of combinatorial numbers and polynomials,
Kucukoglu et al. [14] gave some identities related to a discrete probability
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distribution related to the binomial distribution and the Poisson distribu-
tion. Especially, for the moments of two kinds of random variables arising
from Laplace distribution, Kim et al. [11] provided formulas in terms of
the type 2 Bernoulli numbers and the Euler numbers of the second kind
with the help of their generating functions. All these studies in recent years
have shown that combining the generating function techniques with the con-
cepts of the probability theory provides us to obtain elegant identities and
formulas.

With this motivation, in this study, we not only give some survey on
old and new identities related to the characteristic function, the Laplace
distribution and special numbers and polynomials, but also provide some
comparative results and observations. In addition, by using the techniques
of generating functions and characteristic function of the aforementioned
random variables, we give some computation formulas for the higher-order
moments of some kinds of random variables with the Laplace distribution
in terms of the Bernoulli numbers of the first kind, the Euler numbers of
the second kind and Riemann zeta function.

In the rest of this section, we recall some definitions and notations of gen-
erating functions for some special numbers and polynomials, trigonometric
functions, characteristic functions, the Laplace distribution, which are used
in a wide range of branches of mathematics such as mathematical statistics,
probability theory. Throughout this paper, we use the following standards
notations:

N = {1, 2, 3, . . .}, N0 = {0, 1, 2, 3, . . .}, Z denotes the set of integers, R
denotes the set of real numbers and C denotes the set of complex numbers.
In addition, we assume that i2 = −1.

The Bernoulli polynomials Bn(x) of the first kind are defined by means
of the following generating function:

(1)
t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
,

where |t| < 2π. Substituting x = 0 or x = 1 into (1), we have

Bn(0) = Bn(1) = Bn,

where Bn denotes the Bernoulli numbers of the first kind defined as follows:

(2)
t

et − 1
=

∞∑
n=0

Bn
tn

n!

(cf. [1]-[27]).
Using (2), a computation formula for the Bernoulli numbers of the first

kind is given as follows:

(3) Bn =

n∑
k=0

(
n

k

)
Bk

with B0 = 1 and n ∈ N (cf. [1]-[27]).
Using (1) and (2), we have

(4) Bn

(
1

2

)
= (21−n − 1)Bn
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(cf. [1]-[27]).
Using (3), a few values of the numbers Bn are given as follows:

B0 = 1, B1 = −1

2
, B2 =

1

6
, B3 = 0, B4 = − 1

30
, B5 = 0,

and so on (cf. [1]-[27]).
The Euler polynomials of the second kind, En(x), are defined by means

of the following generating function:

(5)
2

et + e−t
ext = sech(t)ext =

∞∑
n=0

En(x)
tn

n!
,

(cf. [11]).
Substituting x = 0 into (5), we have

En(0) = En,

where En denotes the Euler numbers of the second kind defined as follows:

(6)
1

cosh t
=

2

et + e−t
=

∞∑
n=0

En
tn

n!
,

(cf. [1], [11], [18], [21], [22]).
Note that the odd-indexed Euler numbers of the second kind are all zero.

That is, for n ∈ N0, we have

E2n+1 = 0.

On the other hand, using (6), a computation formula for the even-indexed
Euler numbers of the second kind is given as follows:

(7) E2n = −
n−1∑
k=0

(
2n

2k

)
E2k,

where n ∈ N (cf. [1], [11], [18], [21]). With the help of the formula given by
(7), a few values of the even-indexed Euler numbers of the second kind are
computed as follows:

E0 = 1, E2 = −1, E4 = 5, E6 = −61, E8 = 1385,

and so on (cf. [1], [11], [18], [21]).
The infinite product formulas for the hyperbolic sine function sinh(z), the

cosine function cos(z) and the sine function sin(z) are given respectively as
follows:

(8) sinh(z) = z
∞∏
n=1

(
1 +

( z

nπ

)2
)
,

(9) cos(z) =
∞∏
n=1

(
1−

(
2z

(2n− 1)π

)2
)

and

(10) sin(z) = z

∞∏
n=1

(
1−

( z

nπ

)2
)

(cf. [3]).
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Let X be a continuous random variable and f be the probability density
function of X. Then, the characteristic function φx(t) of the probability
density function f is defined by

(11) φx(t) =

∞∫

−∞
eitxf(x)dx

(cf. [4], [16]).
Let X be a continuous random variable and f be the probability density

function of X. Then, the expected value of Xk, which is also called kth
moment of the random variable X, is defined by

mk = E
[
Xk

]
=

∞∫

−∞
xkf(x)dx

(cf. [4], [16]).
Let X be a continuous random variable and f be the probability density

function of X. Then, the moment generating function mx(t) of the random
variable X is defined by

(12) mx(t) = E
[
etX

]
=

∞∫

−∞
etxf(x)dx

(cf. [4], [16]).
The classical Laplace distribution (also known as first law of Laplace) is

a probability distribution on (−∞,∞) with parameters θ and s and this
distribution is given by the following probability density function:

(13) f(x; θ, s) =
1

2s
e−

|x−θ|
s ,

where (−∞ < x < ∞), θ ∈ (−∞,∞) and s > 0 (cf. [9], [12], [16]).
Substituting θ = 0 and s = 1 into (13), we have the probability density

function for the standard classical Laplace distribution with parameters 0
and 1 as follows:

(14) f(x; 0, 1) =
1

2
e−|x|

(cf. [9], [12], [16]) and its characteristic function is as follows:

(15) φx(t) =
1

t2 + 1

(see, for detail, [6], [27], [16]).

2. Computation formulas for the higher-order moments of
some kinds of random variables with the Laplace

distribution

In this section, by using the techniques of generating functions and char-
acteristic function of the aforementioned random variables, we give not only
some computation formulas, but also explicit formulas for the higher-order
moments of some kinds of random variables with the Laplace distribution in
terms of the Bernoulli numbers of the first kind and Riemann zeta function.
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Next, in same manner with the works of [6], [9], [11] and [16], [27], let us
start with assuming that the independent random variables X1, X2, X3, ...
have the standard classical Laplace distribution with parameters 0 and 1.
Then, the following series becomes convergent

(16) H =
∞�
k=1

Xk

k
.

Observe that the above convergent series H is a random variable derived
from the independent random variables X1, X2, X3, . . . with the Laplace dis-
tribution.

Thus, the characteristic function of the random variable H is obtained as
follows:

(17) E
�
eitH

�
= E

⎡
⎣eit

( ∞∑
k=1

Xk
k

)⎤
⎦ =

∞�
k=1

E

�
e

(
Xk
k

)
it
�
,

where

(18) E

�
e

(
Xk
k

)
it
�
=

1

1 +
�
t
k

�2 .

Combining (17) with (18), we get

(19) E
�
eitH

�
=

∞�
k=1

�
1 +

�
t

k

�2
�−1

.

By using (8) we get

(20)
πt

sinhπt
=

∞�
n=1

�
1 +

�
t

n

�2
�−1

.

Thus, by using (19) and (20) we have

(21) E
�
eitH

�
=

πt

sinhπt
.

By using (17), we have

E
�
eitH

�
=

∞�
n=0

(it)n

n!
E

�� ∞�
k=1

Xk

k

�n�
(22)

=

∞�
n=0

(it)n

n!
μn,

where

μn = E [Hn]

which is called the nth moment of the random variable H relative to 0.
On the other hand, by using (21), we obtain

(23) E
�
eitH

�
=

2πt

e2πt − 1
eπt.
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Replacing t by 2πt in (1) and when x = 1
2 , we have

(24)
2πt

e2πt − 1
eπt =

∞∑
n=0

Bn

(
1

2

)
(2π)n

tn

n!
.

By using (22) in (23), and then combining the final equation with (24), we
get

∞∑
n=0

inμn
tn

n!
=

∞∑
n=0

Bn

(
1

2

)
(2π)n

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we get
the following theorem:

Theorem 2.1. Let n ∈ N0. Then we have

(25) μn = i−n2nπnBn

(
1

2

)
.

By using (3) and (4) in (25), we compute a few value of the moments μn

as follows:

μ0 = 1, μ1 = 0, μ2 =
π2

3
, μ3 = 0, μ4 =

7π4

15
, μ5 = 0, . . .

Combining (4) with (25) yields the following corollary:

Corollary 2.1. Let n ∈ N0. Then we have

μn = 2i−nπn
(
1− 2n−1

)
Bn.

Remark 2.1. It is well-known that the odd indexed Bernoulli numbers of
the first kind are equal to zero. Therefore, we may conclude from Corollary
2.1 that the odd-order moments of the random variable H are zero. That is,
we have

(26) μ2n+1 = 0.

Thus, only the even-order moments of the random variable Y need to be
calculated. That is, replacing n by 2n in Corollary 2.1 yields the even-order
moments of the random variable H as follows:

(27) μ2n = 2 (−1)n π2n
(
1− 22n−1

)
B2n.

Recall that the relation between the Bernoulli numbers of the first kind
and the Riemann zeta function is given as follows:

(28) B2n = (−1)n−1 2 (2n)!

(2π)2n
ζ (2n) ; (n ∈ N0)

where ζ denotes the Riemann zeta function defined by

(29) ζ (s) =

∞∑
n=1

1

ns
; (s ∈ C; Re (s) > 1)

(cf. [3], [24], [25], [26]).
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By substituting (28) into (27), we get

μ2n = 2 (−1)n π2n
(
1− 22n−1

)(
(−1)n−1 2 (2n)!

(2π)2n
ζ (2n)

)
.

After some elementary simplifications in the above equation, we arrive at a
relation between the Riemann zeta function and the even-order moments of
the random variable H by the following corollary:

Corollary 2.2. Let n ∈ N0. Then we have

μ2n = 2
(
1− 21−2n

)
(2n)!ζ (2n) .

Also, recall that Srivastava [24, Eq.-(2.8)] gave the following recurrence
relation for the Riemann zeta function:

(30) ζ (2n) =
2

2n+ 1

n−1∑
k=1

ζ (2k) ζ (2n− 2k) ; (n ∈ N \ {1}) .

By combining (30) with Corollary 2.2, we get

μ2n =
4
(
1− 21−2n

)
(2n)!

2n+ 1

n−1∑
k=1

ζ (2k) ζ (2n− 2k) ; (n ∈ N \ {1})

which, by using (28), yields another computation formula for the even-order
moments of the random variable H by the following corollary:

Corollary 2.3. Let n ∈ N \ {1}. Then we have

μ2n =
2 (−1)n π2n

(
22n−1 − 1

)
2n+ 1

n−1∑
k=1

(
2n

2k

)
B2kB2n−2k.

It should be also recall that an explicit formula for the Bernoulli numbers
of the first kind is given as follows:

(31) Bn =
n∑

k=0

k∑
j=0

(−1)j

k + 1

(
k

j

)
jn

where n ∈ N (cf. [3], [24, 25, 26]). Combining (31) with Corollary 2.1 yields
an explicit formula for the higher-order moments of the random variable H
by the following corollary:

Corollary 2.4. Let n ∈ N0. Then we have

(32) μ2n = 2 (−1)n π2n
(
1− 22n−1

) 2n∑
k=0

k∑
j=0

(−1)j

k + 1

(
k

j

)
j2n.

Remark 2.2. By supposing that the independent random variables X1, X2, X3, ...
have the standard classical Laplace distribution with parameters 0 and 1,
Kim et al. [11, Eq.-(66)] considered the characteristic function of

Z =
∞∑
k=1

Xk

2kπ
,
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and then proved that the following equality holds true

(33) E [Zn] = i−n

(
1

2

)n−1

bn,

where bn denotes the type 2 Bernoulli numbers which is different from the
classical Bernoulli numbers Bn.

3. Further remarks and observations on characteristic
function of the random variables with Laplace distribution

and known identites related to Bernoulli and Euler
numbers

In this section, we give further remarks and observations on character-
istic function of the random variables with Laplace distribution and some
identities related to the Bernoulli numbers of the first kind and the Euler
numbers of the second kind.

We now give modification and unification of the continuous random vari-
able with Laplace distribution, which is derived from (16), as follows:

Y =
∞∑
k=1

Xk

(2k − 1)π

and

Z =

∞∑
k=1

Xk

2kπ
.

Due to the convergency of the series H defined in (16), the above series are
also convergent(see, for details, [6], [9], [11], [16], [27]).

Using the characteristic function of the random variable H, it is easy
to compute the characteristic functions of the random variables Y and Z,
which are related to the random variable H as follows:

The characteristic functions of the random variable Y is given by

E
[
e2itY

]
=

∞∏
k=1

E

[
e

(
Xk

(2k−1)π
2it

)]
(34)

where

E

[
e

(
Xk

(2k−1)π
2it

)]
=

∞∫

−∞

1

2
e

(
2it

(2k−1)π

)
x
e−|x|dx(35)

=

(
1 +

(
2t

(2k − 1)π

)2
)−1

,

(see, for details, [6], [9], [11], [16], [27]).
The characteristic function of Z is given by

E
[
eitZ

]
=

∞∏
k=1

E

[
e

(
Xk
2kπ

)
it
]
.(36)
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where

(37) E

[
e

(
Xk
2kπ

)
it
]
=

∞∫

−∞

1

2
e(

it
2kπ )xe−|x|dx =

(
1 +

(
t

2kπ

)2
)−1

,

(see, for details, [6], [9], [11], [16], [27]).
By (37), we have

(38)
∞∏
k=1

E

[
e

(
Xk
2kπ

)
it
]
=

∞∏
k=1

(
1 +

(
t

2kπ

)2
)−1

.

On the other hand, replacing t by it in (10) yields the following well-known
result:

∞
2
∏
n=1

(
1 +

(
t

2nπ

)2
)−1

=
it

sin
(
it
2

) =
2t

et − 1
e

t
2 ,

(cf. [11]).
Observe that the right-hand side of the above equation is the generating

function for the Bernoulli polynomials of the first kind. It is not difficult
to see that E [Zn], which is derived from the characteristic function for the
Laplace distribution, is associated with the Bernoulli polynomials of the first
kind. For details, see [11].

By using(12) and (35), we also have

(39) E
[
e2itY

]
=

∞∑
n=0

E [Y n]
(2it)n

n!
=

∞∏
k=1

(
1 +

(
2t

(2k − 1)π

)2
)−1

.

Replacing t by it in (9) and combining the final equation with (6), we have

1

cos(it)
=

∞∑
n=0

En
tn

n!
,(40)

(cf [11]).
Similarly, we have

E
[
e2itY

]
=

∞∑
n=0

En
tn

n!
,(41)

(cf [11]). After some elementary calculations, for n ∈ N0, we have

(42) E [Y n] =
1

2

∞∫

−∞
Y ne−|Y |dY = 2−ni−nEn

which was given by Kim et al. [11].

Remark 3.1. It is well-known that the odd indexed Euler numbers of the
second kind are equal to zero. Therefore, we may conclude from (42) that
the odd-order moments of the random variable Y are zero. That is, we have

(43) E
[
Y 2n+1

]
= 0.
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Thus, only the even-order moments of the random variable Y need to be
calculated. That is, replacing n by 2n in (42) yields the even-order moments
of the random variable Y as follows:

(44) E
[
Y 2n

]
= (−1)n

E2n

22n
.

By combining (44) with the computation formula for the Euler numbers
of the second kind given by (7), we have another computation formula for
the even-order moments of the random variable Y in terms of the Euler
numbers of the second kind by the following corollary:

Corollary 3.1. Let n ∈ N \ {1}. Then we have

E
[
Y 2n

]
= (−1)n+1 1

22n

n−1∑
k=0

(
2n

2k

)
E2k.

Recall that Wei and Qi [28, Theorem 1.4] gave an explicit formula for the
Euler numbers of the second kind as follows:

(45) E2n =
2n∑
k=1

2k∑
j=0

(−1)k+j

2k

(
2k

j

)
(k − j)2n

where n ∈ N. Combining (44) with (45) yields an explicit formula for the
even-order moments of the random variable Y by the following corollary:

Corollary 3.2. Let n ∈ N. Then we have

(46) E
[
Y 2n

]
=

(−1)n

22n

2n∑
k=1

2k∑
j=0

(−1)k+j

2k

(
2k

j

)
(k − j)2n .

Multiplying the generating functions for the Euler numbers of the second
kind and the Bernoulli polynomials of the first kind, we have

(
1

cos (it)

)(
it

sin (it)

)
=

∞∑
n=0

En
tn

n!

∞∑
n=0

2nBn

(
1

2

)
tn

n!

By using the double-angle formula for sine function on the left-hand side of
the above equation and using the Cauchy product on the right-hand side of
the above equation, we get

2it

sin (2it)
=

∞∑
n=0

(
n∑

k=0

(
n

k

)
2kBk

(
1

2

)
En−k

)
tn

n!

which, by (4), reduces to the following formula:

(47)
2it

sin (2it)
=

∞∑
n=0

(
2

n∑
k=0

(
n

k

)(
1− 2k−1

)
BkEn−k

)
tn

n!
.

By (10), we also have

(48)
2it

sin (2it)
=

∞∏
n=1

(
1 +

(
2t

nπ

)2
)−1

.
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On the other hand, observe that the characteristic function of the random
variable

2

π

∞�
k=1

Xk

k

is obtained as follows:

(49) E

⎡
⎣eit

(
2
π

∞∑
k=1

Xk
k

)⎤
⎦ =

∞�
k=1

E

�
e

(
2Xk
πk

)
it
�
,

where

(50) E

�
e

(
2Xk
πk

)
it
�
=

�
1 +

�
2t

nπ

�2
�−1

.

Combining (49) with (50), we get

(51) E

⎡
⎣eit

(
2
π

∞∑
k=1

Xk
k

)⎤
⎦ =

∞�
k=1

�
1 +

�
2t

kπ

�2
�−1

.

By using (49), we have

E

⎡
⎣eit

(
2
π

∞∑
k=1

Xk
k

)⎤
⎦ =

∞�
n=0

(it)n

n!
E

��
2

π

∞�
k=1

Xk

k

�n�
(52)

=
∞�
n=0

(it)n

n!
E

��
2

π

�n
� ∞�

k=1

Xk

k

�n�

=

∞�
n=0

�
2

π

�n

inμn
tn

n!

where

μn = E [Hn]

which is called the nth moment of the random variable H relative to 0.
Combining Eqs (48), (51), (52) with (47), we get

∞�
n=0

�
2

π

�n

inμn
tn

n!
=

∞�
n=0

�
2

n�
k=0

�
n

k

��
1− 2k−1

�
BkEn−k

�
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we get
another computation formula for the nth moment of the random variable
H including both the Bernoulli numbers of the first kind and the Euler
numbers of the second kind by the following theorem:

Theorem 3.1.

μn = 2
�π
2

�n
in

n�
k=0

�
n

k

��
1− 2k−1

�
BkEn−k.



Z. S. Askan, I. Kucukoglu and Y. Simsek466

12 ZEHRA SELIN ASKAN, IREM KUCUKOGLU, AND YILMAZ SIMSEK

Remark 3.2. Note that Theorem 2.1, Corollary 2.1, Corollary 2.2, Corol-
lary 2.3, Corollary 3.1, Corollary 3.2, Theorem 3.1 can be achieved in two
different ways. The first way is using the characteristic function of a random
variable with the Laplace distribution. The second way is to take logarithmic
derivative of infinite product of trigonometric function. That is, two kinds
of proof can be given for the aforementioned results. For further observation,
we now write an important theorem from the book of Conway [3] explaining
here only what we mean:
The Weierstrass Factorization Theorem (cf. [3]): Let f be an entire
function and let {an} be the non-zero zeros of f repeated according to mul-
tiplicity; suppose f has a zero at z = 0 of order m ≥ 0 (a zero of order
m = 0 at z = 0 means f(0) �= 0). Then there is an entire function g and a
sequence of integers {pn} such that

f(z) = zmeg(z)
∞∏
n=1

Epn

(
z

an

)

where E denotes the elementary factors defined by

E0(z) = 1− z,

Ep(z) = (1− z)e

(
p∑

n=1

zn

n

)

; p ∈ N;

(for details, see [3]). Let recall applications of the Weierstrass Factorication
Theorem to the functions sinπz and cosπz, respectively, as follows (for de-
tails see the work of Conway [3]): One of these applications is factorization
of the sine function given below:

sinπz

πz
=

∞∏
n=1

(
1− z2

n2

)

which is uniformly convergent over the compact subset of z-plane (cf. [3, p.
175]), taking the reciprocal of the case z of the above factorization gives the
well-known Wallis’s formula below:

π

2
=

∞∏
n=1

(2n)2

(2n− 1) (2n+ 1)
,

(cf. [3, Exercise 4, p. 176]). Another application is factorization of the sine
function given below:

cosπz =

∞∏
n=1

(
1− 4z2

(2n− 1)2

)
,

(cf. [3, Exercise 1, p. 176]). Thus, using Mittag-Leffler expansions of
meromorphic functions and the Weierstrass Factorication Theorem gives us
not only Eqs. (8), (9) and (10), but also another generating functions for
the Bernoulli and Euler numbers.

3.1. Futher remarks on applications of moments. Here, we give some
further remarks on applications of moments.
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Moments and moment generating functions of random variables are fre-
quently used in various fields of mathematics, especially probability. Mo-
ments play a key role in modeling, examining the characteristics of a dis-
tribution, particularly in the construction of three-term recurrence relations
for the orthogonal polynomials.

Let n ∈ N0. The moments μn of the weight function w(x) are defined as
follows:

(53) μn =

b∫

a

xnw(x)dx,

(cf. [2]).
It is well-known that the Hermite polynomials, Hn(x), have an important

place in orthogonal polynomial families and these polynomials are orthogo-
nal on the interval (−∞,∞) with respect to the weight function:

w(x) = e−x2

because these polynormials satisfy the following orthogonality relation:

(54)

∞∫

−∞
Hn(x)Hm(x)e−x2

dx = 2nn!
√
πδnm

where δnm denotes the Kronecker delta (cf. [2]).

Note that the moments μn of the weight function w(x) = e−x2
are given

as follows:

(55) μn =

−∞∫

∞
xne−x2

dx.

The Hankel determinant of the (n+1)× (n+1) matrix, whose (i, j) entry
is μi+j , is given as follows:

(56) Δn = det(μi+j)
n
i,j=0 =

∣∣∣∣∣∣∣∣∣

μ0 μ1 . . . μn

μ1 μ2 · · · μn+1
...

... · · · ...
μn μn+1 · · · μ2n

∣∣∣∣∣∣∣∣∣
(cf. [2], [20]).

Combining (55) with (56) gives us the well-known three-term recurrence
relation for the Hermite polynomials as follows:

Hn+1(x) = 2xHn(x)− 2nHn−1(x); (n ∈ N)

with the initial conditions H0 (x) = 1 and H1 (x) = 2x (cf. [2]).
The above type three-term recurrence relations for the special polynomials

can be achieved in many different ways such as the generating functions, the
umbral calculus, the Hankel determinant with the moments of the weight
function of the orthogonal, algebraic manipulations on the coefficients, and
the others (for details, see [2]-[29]).
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4. Conclusion

In this paper, some old and new identities associated with Laplace distri-
bution and Bernoulli numbers are investigated. Furthermore, various types
of computation formulas are provided for the higher-order moments of some
kinds of random variables with the Laplace distribution which include the
Bernoulli numbers of the first kind, the Euler numbers of the second kind and
Riemann zeta function by using the techniques of generating functions and
characteristic function of the aforementioned random variables. It should
be noted here that the results of the present paper have the potential for
attracting attention of researchers working on not only probability theory
and number theory, but also other relevant areas. For future studies, it is
planned to investigate relations among the higher-order moments of certain
random variables with the Laplace distribution and the generating functions
for the combinatorial numbers such as y1 (n, k;λ) and y2 (n, k;λ) recently
introduced by Simsek in [22].
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